4,750 research outputs found

    Lipopolysaccharide induces cellular hypertrophy through calcineurin/NFAT-3 signaling pathway in H9c2 myocardiac cells

    Get PDF
    [[abstract]]Evidences suggest that lipopolysaccharide (LPS) participates in the inflammatory response in the cardiovascular system; however, it is unknown if LPS is sufficient to cause the cardiac hypertrophy. In the present study, we treated H9c2 myocardiac cells with LPS to explore whether LPS causes cardiac hypertrophy, and to identify the precise molecular and cellular mechanisms behind hypertrophic responses. Here we show that LPS challenge induces pathological hypertrophic responses such as the increase in cell size, the reorganization of actin filaments, and the upregulation of hypertrophy markers including atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in H9c2 cells. LPS treatment significantly promotes the activation of GATA-4 and the nuclear translocation of NFAT-3, which act as transcription factors mediating the development of cardiac hypertrophy. After administration of inhibitors including U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor), SP600125 (JNK1/2 inhibitor), CsA (calcineurin inhibitor), FK506 (calcineurin inhibitor), and QNZ (NF kappa B inhibitor), LPS-induced hypertrophic characteristic features, such as increases in cell size, actin fibers, and levels of ANP and BNP, and the nuclear localization of NFAT-3 are markedly inhibited only by calcineurin inhibitors, CsA and FK506. Collectively, these results suggest that LPS leads to myocardiac hypertrophy through calcineurin/NFAT-3 signaling pathway in H9c2 cells. Our findings further provide a link between the LPS-induced inflammatory response and the calcineurin/NFAT-3 signaling pathway that mediates the development of cardiac hypertrophy

    Akt mediates 17 beta-estradiol and/or estrogen receptor-alpha inhibition of LPS-induced tumor necresis factor-alpha expression and myocardial cell apoptosis by suppressing the JNK1/2-NF kappa B pathway

    Get PDF
    [[abstract]]Evidence shows that women have lower tumour necrosis factor-alpha (TNF-alpha) levels and lower incidences of heart dysfunction and sepsis-related morbidity and mortality. To identify the cardioprotective effects and precise cellular/molecular mechanisms behind estrogen and estrogen receptors (ERs), we investigated the effects of 17 beta-estradiol (E-2) and estrogen receptor alpha (ER alpha) on LPS-induced apoptosis by analyzing the activation of survival and death signalling pathways in doxycycline (Dox)-inducible Tet-On/ER alpha H9c2 myocardial cells and ER alpha-transfected primary cardiomyocytes overexpressing ER alpha. We found that LPS challenge activated JNK1/2, and then induced I kappa B degradation, NF kappa B activation, TNF-alpha up-regulation and subsequent myocardial apoptotic responses. In addition, treatments involving E-2, membrane-impermeable BSA-E-2 and/or Dox, which induces ER alpha overexpression, significantly inhibited LPS-induced apoptosis by suppressing LPS-up-regulated JNK1/2 activity, I kappa B degradation, NF kappa B activation and pro-apoptotic proteins (e.g. TNF-alpha, active caspases-8, t-Bid, Bax, released cytochrome c, active caspase-9, active caspase-3) in myocardial cells. However, the cardioprotective properties of E-2, BSA-E-2 and ER alpha overexpression to inhibit LPS-induced apoptosis and promote cell survival were attenuated by applying LY294002 (PI3K inhibitor) and PI3K siRNA. These findings suggest that E-2, BSA-E-2 and ER alpha expression exert their cardioprotective effects by inhibiting JNK1/2-mediated LPS-induced TNF-alpha expression and cardiomyocyte apoptosis through activation of Akt

    Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    Get PDF
    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.1152sciescopu

    3D time series analysis of cell shape using Laplacian approaches

    Get PDF
    Background: Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results: We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions: The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations

    Bacillus anthracis Protease InhA Increases Blood-Brain Barrier Permeability and Contributes to Cerebral Hemorrhages

    Get PDF
    Hemorrhagic meningitis is a fatal complication of anthrax, but its pathogenesis remains poorly understood. The present study examined the role of B. anthracis-secreted metalloprotease InhA on monolayer integrity and permeability of human brain microvasculature endothelial cells (HBMECs) which constitute the blood-brain barrier (BBB). Treatment of HBMECs with purified InhA resulted in a time-dependent decrease in trans-endothelial electrical resistance (TEER) accompanied by zonula occluden-1 (ZO-1) degradation. An InhA-expressing B. subtilis exhibited increased permeability of HBMECs, which did not occur with the isogenic inhA deletion mutant (ฮ”inhA) of B. anthracis, compared with the corresponding wild-type strain. Mice intravenously administered with purified InhA or nanoparticles-conjugated to InhA demonstrated a time-dependent Evans Blue dye extravasation, leptomeningeal thickening, leukocyte infiltration, and brain parenchymal distribution of InhA indicating BBB leakage and cerebral hemorrhage. Mice challenged with vegetative bacteria of the ฮ”inhA strain of B. anthracis exhibited a significant decrease in leptomeningeal thickening compared to the wildtype strain. Cumulatively, these findings indicate that InhA contributes to BBB disruption associated with anthrax meningitis through proteolytic attack on the endothelial tight junctional protein zonula occluden (ZO)-1

    Fifteen-Year Population Attributable Fractions and Causal Pies of Risk Factors for Newly Developed Hepatocellular Carcinomas in 11,801 Men in Taiwan

    Get PDF
    Development of hepatocellular carcinoma (HCC) is a multi-factorial process. Chronic infections with hepatitis B virus (HBV) and hepatitis C virus (HCV) are important risk factors of HCC. Host factors, such as alcohol drinking, may also play a role. This study aims to provide a synthesis view on the development of HCC by examining multiple risk factors jointly and collectively. Causal-pie modeling technique was applied to analyze a cohort of 11,801 male residents (followed up for 15 years) in Taiwan, during which a total of 298 incident HCC cases were ascertained. The rate ratios adjusted by age were further modeled by an additive Poisson regression. Population attributable fractions (PAFs) and causal-pie weights (CPWs) were calculated. A PAF indicates the magnitude of case-load reduction under a particular intervention scenario, whereas a CPW for a particular class of causal pies represents the proportion of HCC cases attributable to that class. Using PAF we observed a chance to reduce around 60% HCC risk moving from no HBV-related intervention to the total elimination of the virus. An additional โˆผ15% (or โˆผ5%) reduction can be expected, if the HBV-related intervention is coupled with an HCV-related intervention (or an anti-drinking campaign). Eight classes of causal pies were found to be significant, including four dose-response classes of HBV (total CPW=52.7%), one independent-effect class of HCV (CPW=14.4%), one HBV-alcohol interaction class (CPW=4.2%), one HBV-HCV interaction class (CPW=1.7%), and one all-unknown class (CPW=27.0%). Causal-pie modeling for HCC helps clarify the relative importance of each viral and host factor, as well as their interactions

    Elevated Aspartate and Alanine Aminotransferase Levels and Natural Death among Patients with Methamphetamine Dependence

    Get PDF
    Background: Methamphetamine is one of the fastest growing illicit drugs worldwide, causing multiple organ damage and excessive natural deaths. The authors aimed to identify potential laboratory indices and clinical characteristics associated with natural death through a two-phase study. Methods: Methamphetamine-dependent patients (n = 1,254) admitted to a psychiatric center in Taiwan between 1990 and 2007 were linked with a national mortality database for causes of death. Forty-eight subjects died of natural causes, and were defined as the case subjects. A time-efficient sex-and age-matched nested case-control study derived from the cohort was conducted first to explore the potential factors associated with natural death through a time-consuming standardized review of medical records. Then the identified potential factors were evaluated in the whole cohort to validate the findings. Results: In phase I, several potential factors associated with natural death were identified, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), comorbid alcohol use disorder, and the prescription of antipsychotic drugs. In phase II, these factors were confirmed in the whole cohort using survival analysis. For the characteristics at the latest hospital admission, Cox proportional hazards models showed that the adjusted hazard ratios for natural death were 6.75 (p<0.001) in the group with markedly elevated AST (>80 U/L) and 2.66 (p<0.05) in the group with mildly elevated AST (40-80 U/L), with reference to the control group (>40 U/L). As for ALT, the adjusted hazard ratios were 5.41 (p<0.001), and 1.44 (p>0.05). Comorbid alcohol use disorder was associated with an increased risk of natural death, whereas administration of antipsychotic drugs was not associated with lowered risk. Conclusions: This study highlights the necessity of intensive follow-up for those with elevated AST and ALT levels and comorbid alcohol use disorder for preventing excessive natural deaths

    The MIF antagonist ISO-1 attenuates corticosteroid-insensitive inflammation and airways hyperresponsiveness in an ozone-induced model of COPD

    Full text link
    Copyright ยฉ 2016 Russell et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Introduction. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine associated with acute and chronic inflammatory disorders and corticosteroid insensitivity. Its expression in the airways of patients with chronic obstructive pulmonary disease (COPD), a relatively steroid insensitive inflammatory disease is unclear, however. Methods. Sputum, bronchoalveolar lavage (BAL) macrophages and serum were obtained from nonsmokers, smokers and COPD patients. To mimic oxidative stress-induced COPD, mice were exposed to ozone for six-weeks and treated with ISO-1, a MIF inhibitor, and/or dexamethasone before each exposure. BAL fluid and lung tissue were collected after the final exposure. Airway hyperresponsiveness (AHR) and lung function were measured using whole body plethysmography. HIF-1ฮฑ binding to the Mif promoter was determined by Chromatin Immunoprecipitation assays. Results. MIF levels in sputum and BAL macrophages from COPD patients were higher than those from non-smokers, with healthy smokers having intermediate levels. MIF expression correlated with that of HIF-1ฮฑ in all patients groups and in ozone-exposed mice. BAL cell counts, cytokine mRNA and protein expression in lungs and BAL, including MIF, were elevated in ozone-exposed mice and had increased AHR. Dexamethasone had no effect on these parameters in the mouse but ISO-1 attenuated cell recruitment, cytokine release and AHR. Conclusion MIF and HIF-1ฮฑ levels are elevated in COPD BAL macrophages and inhibition of MIF function blocks corticosteroid-insensitive lung inflammation and AHR. Inhibition of MIF may provide a novel anti-inflammatory approach in COPD

    Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling.

    Get PDF
    Transmembrane ฮฑ-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr) and basic (Arg) residues help to lock ฮฑ-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD) of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift) and orientation (tilt, rotation) of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 ร…) shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (nโ€Š=โ€Š100) ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors

    Observation of Bose-Einstein Condensation in a Strong Synthetic Magnetic Field

    Get PDF
    Extensions of Berry's phase and the quantum Hall effect have led to the discovery of new states of matter with topological properties. Traditionally, this has been achieved using gauge fields created by magnetic fields or spin orbit interactions which couple only to charged particles. For neutral ultracold atoms, synthetic magnetic fields have been created which are strong enough to realize the Harper-Hofstadter model. Despite many proposals and major experimental efforts, so far it has not been possible to prepare the ground state of this system. Here we report the observation of Bose-Einstein condensation for the Harper-Hofstadter Hamiltonian with one-half flux quantum per lattice unit cell. The diffraction pattern of the superfluid state directly shows the momentum distribution on the wavefuction, which is gauge-dependent. It reveals both the reduced symmetry of the vector potential and the twofold degeneracy of the ground state. We explore an adiabatic many-body state preparation protocol via the Mott insulating phase and observe the superfluid ground state in a three-dimensional lattice with strong interactions.Comment: 6 pages, 5 figures. Supplement: 6 pages, 4 figure
    • โ€ฆ
    corecore